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We develop and experimentally test a quasi-self-similar solution for the spreading of viscous
nonvolatile droplets over a dry and horizontal solid substrate, under the condition of complete
wetting (spreading parameter S > 0) with both gravity and Laplace pressure as driving forces. The
problem does not admit a self-similar solution because two dimensional characteristic parameters,

namely, the slipping length A and the capillary distance a, cannot be ruled out.

Therefore, we

approximate the solution by the members of a family of self-similar solutions, each one corresponding
to different values of the ratios z¢/a and ho/\, where x5 and ho are the instantaneous drop extension
and central thickness, respectively. This treatment of the problem also produces an explicit formula
(which must be integrated) to predict the drop radius. The excellent agreement with our own and
other authors’ experimental data suggests that the approach can be considered as an interesting
tool for solving problems where strict self-similarity fails.

PACS number(s): 47.15.Gf, 47.10.+g, 68.45.Gd, 68.10.Cr

I. INTRODUCTION

Recently, attention has been devoted to the spreading
of viscous drops over a completely wettable horizontal
substrate, with both gravity g and surface tension v at
the drop free surface as the driving forces. Gravity is the
main driving force [1-3] when the volume V is large, i.e.,
V1/3 > a, where a = /v/pg is the capillary length and
p the liquid density (a = 1.5 mm for the liquids currently
used in experiments); on the contrary, when the volume
is small, the gradient of the Laplace pressure dominates
[4-9]. However, a more detailed analysis shows that the
regimes in which one of these forces prevails cannot be
sharply separated. For instance, when the radius of a
drop greatly exceeds a, experiments [10-13] show that
gravity becomes important. On the other hand, when
the thickness of a large drop becomes of the order of a,
the surface tension produces small but appreciable effects
[14]. This situation arises because the ratio between both
forces is spatially nonuniform: gravity prevails in the cen-
tral region of the drop and Laplace pressure prevails near
the edge [12].

Unfortunately, the application of self-similarity meth-
ods, useful to simplify the description of flows with sim-
ple symmetries, encounters here serious troubles. The
first difficulty is that realistic boundary conditions at
the drop edge break self-similarity [15] because they in-
troduce characteristic lengths (or other dimensional pa-
rameters) related to local microscopic scales, indepen-
dent from those describing the macroscopic scale. As the
microscopic mechanisms by which a liquid wets a solid
are not yet sufficiently known, the formulation of reli-
able boundary conditions is an open problem. However,
all reasonable choices exhibit the previous shortcoming.
Here we adopt the usual slipping approach [16—24], which
consists of the relaxation of the no-slip boundary condi-
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tion at the liquid-solid interface by the introduction of a
slipping length A. Under this assumption it is possible to
put the thickness at the drop edge (front) to zero with-
out leading to the divergence of the viscous dissipation
rate and thus avoiding the contact line paradox [25,26].
The second difficulty is that when both gravity and sur-
face tension are considered, another characteristic length
appears, namely, the above mentioned capillary length a.

The current way to overcome these difficulties is to
divide the flow into two or more spatial regions where
gravity or alternatively Laplace pressure is dominant
[12,13,18]; then, the complete solution is obtained by
matched asymptotic expansions between both regions.
An example of this kind of approach is the solution given
by Hocking [18] to the problem of partially wetting drops
spreading. These models, as well as the approach pre-
sented here, use the lubrication approximation theory
and also concern the intermediate asymptotic regime,
where the particularities of the initial conditions are ir-
relevant.

In this work, we extend an approach developed in a
previous paper [15], in which gravity was neglected but
nevertheless self-similarity was broken due to the first dif-
ficulty mentioned above. An analogous idea (called local
similarity) was also used to describe the boundary layer
flow on a flat plate with uniform suction or injection [27]
and also in a nonlinear diffusion problem with an in-flow
boundary condition [28]. The present method consists of
building a solution (called the quasi-self-similar solution)
that, at every instant, is approximated by the self-similar
solution corresponding to the instantaneous values of the
parameters A = A/ho(t) (fractional slipping length) and
B = [zf(t)/a]? (Bond number), where ho(t) is the thick-
ness at the center of the drop and z ¢(t) the front position.
The members of this A and B dependent family of self-
similar solutions extend spatially from the center ( z = 0)
to the drop edge (z = zy), thus including regions with
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quite different ratios between gravity and Laplace forces.
In Sec. IT we describe the main features of the method
and we show that the measured thickness profile of an ac-
tual spreading drop at time t agrees well with the profile
given by the corresponding self-similar solution, i.e., the
solution identified by the values of A and B for the drop
at that time. At a successive time, the profile is given by
another member of that family of solutions as A and B
vary with time. Therefore, the flow is quasi-self-similar,
as it is described by a succession of self-similar solutions,
in analogy with the case of quasisteadiness. The main dif-
ference is that the self-similar solutions include the rate
of variation of the magnitudes; as a result, we obtain
the flow evolution without extra conditions. In Sec. III
we show that this method provides a unified description
of spreadings from zy < a (the Laplace limit) up to
z¢ > a. In Sec. IV we show that the time evolution of
measurable magnitudes such as ¢, ho, and the apparent
contact angle 6; agree very well with experiments.

II. QUASI-SELF-SIMILAR APPROACH

We simplify the Navier-Stokes equations by employ-
ing the well known lubrication approximation [Reynolds
number Re= (pzjvs/p)(ho/xs)? <« 1, where p is the
fluid viscosity and vy = dzys/dt is the front veloc-
ity]. By imposing the slipping boundary condition v, =
A (Ov,/0z) at z = 0 (z and z are the horizontal and verti-
cal coordinates, respectively, and ) is a constant length),
the z-averaged horizontal velocity v = (v,) results

_ P9 Oh _ ,20¢
v= 3“h(h+3)\) (6:1: a*z— ) (1)
where h = h(z,t) is the drop thickness and
8%h  a dOh
=% T zow @)

is the local curvature with o = 0,1 for plane (ribbon)
and axisymmetric (drop) symmetry, respectively. Both v
and h satisfy the continuity equation, which, within the
same approximation, reads

8h e
E-f—:c 5;(1: vh) = 0. (3)

Equations (1)—(3) describe the time evolution of a drop
spreading and are solved under the symmetry conditions

Oh _h _ o 4y (4)
o  9z3 7 7
the conditions at the contact line (z = zy)
h=o0,
Oh/dz = 0, (5)

and the volume conservation
zf
V= / (2wz)* h(z,t) dz = const. (6)
0

The condition of zero slope at the front is a natural ex-
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tension to this case of the condition proposed for par-
tial wetting in which the static contact angle determines
Oh/0z at x = zs [18]. Note that as the slope vanishes
both at the center and at the front, an inflection point
must exist in the thickness profile. The (maximum) slope
at this point is referred to as the apparent contact angle
0;.

As anticipated in the Introduction, a self-similar solu-
tion cannot be proposed because of the two characteristic
lengths (not related to the initial conditions) involved in
the problem, namely, the capillary length a and the slip-
ping length A. Therefore, we look for a solution that is
successively approximated by the members of a family
of self-similar solutions, each one corresponding to given
values of the ratios A and B. Our guess is that the solu-
tion may be written as

h’(llvt) = hO(t)H(n’ A7B)7

v(z,t) = v (H)U(n; A, B), (7)

where H(n;A,B) and U(n;A,B) are nondimensional
functions of n = x/xys. Strictly, we should have writ-
ten an explicit dependence on t, i.e., H(n,t) and U(n,t),
but we suppose that they vary with time only as a conse-
quence of the variation of A and B. Physically, this is rea-
sonable if the characteristic diffusion time Ta;¢ (= pz%/p)
of the velocity field is much smaller than the evolution
time of the dynamic parameters. Since a and ) are fixed,
this time is approximately ¢ = xs/vs. The existence of
such a relation between 74;¢ and t is the key point at the
basis of the quasi-self-similar approach and is guaranteed
in our case by the condition Re< 1.

The extreme cases g = 0, v # 0and g # 0, v = 0
merit some comments. In the first case, the equations
do not admit self-similar solutions, in spite of the fact
that they do not contain the capillary length; the bound-
ary conditions given by Eq. (5) are the same than in
the complete problem and therefore the slipping length
A must be maintained. The second case needs clarifica-
tion. It is well known that a self-similar solution [1-3]
exists when only gravity drives the spreading. However,
this “pure gravity solution” is not the regular limit of
the complete problem for 5 > a. In fact, it corresponds
to a two orders lower differential equation obtained from
Eq. (1) by setting both @ = 0 and A = 0; the only bound-
ary condition at xy required to build up the solution is
h(zs) = 0 and, as a result, 8h/Ox — oo there. This
last feature, clearly not compatible with the second con-
dition of Eq. (5), is essential to allow for A = 0. Instead,
the limit of the complete problem leads to a qualitatively
different profile of the front region because h(z,t) has
to match both conditions of Eq. (5). However large the
ratio x5 /a is, there is a peripheral region dominated by
capillarity, where the slope goes to zero after an inflection
point, so that A cannot be ruled out from Eq. (1). The
width of this region is of the order of a, thus the frac-
tion of the drop affected by capillarity decreases as a/x¢.
Of course, as gravity prevails throughout all the remain-
ing flow, the profile tends to the pure gravity profile as
zf/a — oo, except for this peripheral region. Clearly,



53 QUASI-SELF-SIMILARITY FOR WETTING DROPS

o
o
T T T

S o
»
L e e s e e

FIG. 1. H(n) and H'(n) obtained from Eq. (16) for
A =10"*and B = 2,20,150.

this limit is not strictly self-similar.
By replacing Eq. (7) into Egs. (1) and (3) we obtain
the ordinary differential equations

BU = H (H + 3A) (C' — BH'), (8)

wH —nH' + 7% (n*UH)' =0, 9)

where the primes denote derivation with respect to 7.
Here we introduce the nondimensional curvature

cC=H"+°H (10)
n

and the nondimensional parameters

3u T5 s zy dhg
- 7 = —_ 11
ﬂ ~ qu (ho) y W vfh() dt ( )

An explicit dependence on t for H and U would result in
an additional term of the form z¢(8H/8t) /vy in Eq. (9);
the present approach requires it to be negligible with re-
spect to the remaining terms.

In the variables defined by Eq. (7), the constant volume
condition Eq. (6) reduces to

V= Ihoz";+1 = const, (12)

where

TABLE 1. Values of the parameters obtained for A = 107%.
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- | " (2rn)*H(n) dn (13)

will be called hereinafter the “shape factor.” Equation
(12) implies that if dI/dt is zero or negligible, as would
be the case if A and B were constants, we have

w=—(a+1). (14)
Hence Eq. (9) admits the exact analytical solution

n“H (U — 1) = const. (15)

As this equation must be satisfied for n = 0 where U = 0,
the constant on the right-hand side is zero; therefore, the
solution of Eq. (15) is simply U = 7, i.e., the velocity
profile is linear. We assume that this property is retained
even though I changes because of the variations of A
and B. This assumption is based on the smallness of
Taif with respect to the characteristic time ¢. This is
equivalent to describing the flow instant by instant by a
different self-similar solution, each one corresponding to
the instantaneous values of A and B. This approximation
was also used by Brochard-Wyart et al. [12].

In order to obtain these self-similar solutions, we must
solve the third-order differential equation (8) with U = 7,
that is,

TABLE II. Values of the parameters obtained for B = 100.

B_| B__| Co_| I_| A B__| Co__| I

2 0.546 -0.368 1.602 10°° 31.72 -0.686 2.334
20 2.909 -1.524 1.955 10-* 25.33 -0.553 2.383
150 43.506 -0.596 2.454 10-° 21.07 -0.464 2.418
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FIG. 3. (a)-(f) Comparison of the theoretical profiles (solid lines) with the experiments (symbols). The squares correspond
to experimental values of h obtained by interferometry and the triangles to the numerical derivative of the h curves. For the
theoretical calculations we have used A = 107° cm and all the cases correspond to g = 10 P, p = 0.97 g/cm?, and v = 20.9

dyn/cm.
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Bn=H(H+3A)(C'— BH'), (16)
with the boundary conditions

H(0) =1,
H(1) =0,

H'(0) =0,

H(1) =0, (17)

Note that the condition H"'(0) = 0 is identically satisfied
by Eq. (16). Here, these four conditions are sufficient to
determine the solution of Eq. (16) including the value of
(3 for given values of A and B. However, we need the
values of 8 and Cy = (a + 1)H'’(0) to integrate from
n = 0; in order to calculate them consistently with the
boundary conditions given by Eq. (17), we guess values
of B and Cy and then integrate numerically until n = 1.
We use twice a bisection method: first, we adjust Cy to
obtain H(1) = 0 and, second, we iterate in 8 to achieve
H'(1) = 0. In this way, we obtain the complete solution
of Eq. (16) for every given pair of A and B.

In Fig. 1 we show H(n) and H'(n), respectively, for
A =10"%*and B = 2, 20, and 150 and in Table I we give
the corresponding values of 8, Cy , and I. The thickness
profile is quite sensitive to the value of B, the relevant
feature being the flattening of the central region, which
affects a larger fraction of the drop extension as B in-
creases, thus leading to larger values of I, as shown in
Table I. Note that for small B (e.g., B = 2) the profile
is almost parabolic, as evidenced by the corresponding
near-linear function H'(n) in Fig. 1. The maximum of
H'(n) for this case is close to 2, which is the value for the
spherical cap solution. Larger values of B lead to higher
values of the maximum, compensated by lower values of
the slope in the bulk [the average value of H'(n) is one].

To illustrate the influence of A, we show in Fig. 2
three different profiles H(n) and H'(n), respectively, for
B =100 and A = 1073,107%,10~% and we give the cor-
responding values of 3, Co, and I in Table II . In spite
of the large range of A, the effect of its variation on the
profile as a whole (see, for instance, the value of I) is
very small as only the maximum slope is slightly modi-
fied. More significant is the influence of A on 3; as we
shall see in Eq. (18) in Sec. III, the time evolution is
sensitive to the ratio 8/I3, so that the value of A (more
specifically, the choice of A) produces appreciable effects
on the rate of spreading.

A key point of this work is to verify that the above so-
lutions are suitable to describe instantaneously the flow
for a wide range of A and B by studying experimentally
numerous spreadings of different volumes (see Sec. IV).
Here we show a set of representative cases to be compared
with the solutions of Eq. (16), in their dimensional form.
Though the calculation only requires given values of A
and B, to make possible this comparison it is necessary
to adopt a value for A, as the experiments yield ho, ¢,
and a. Throughout this work we take A = 107 cm as a
reasonable slipping length (we shall return briefly to this
point at the end of Sec. IV). In Fig. 3 we give the theo-
retical curves and experimental data corresponding to six
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pairs (A, B). The symbols of the h/Ox curves were ob-
tained by a numerical differentiation of the experimental
profiles. Clearly, the comparison of the slopes constitutes
a more severe test than the comparison of the profiles.
The excellent agreement shown in Fig. 3 constitutes sup-
port for the central assumption of the present approach,
namely, that the instantaneous flow at ¢ = ¢’ is prop-
erly described by the self-similar solution corresponding
to A(t') and B(t').

III. TIME EVOLUTION:
THEORETICAL RESULTS

A remarkable point is that the above self-similar so-
lutions not only give the spatial features of the flow but
also provide the rate of variation of the front position
without the need of any additional assumption. In fact,
from Eq. (11) we have the front velocity as

V3 —(3a
vf = %%mf(s +6) (18)
As B and I are obtained when solving Eq. (16) with
known values of A and B, the numerical integration of
Eq. (18) gives z4(t) and also ho(t) (= V/Ia:‘;’q). Equa-
tion (18) is analogous to Eq. (55) of Brochard-Wyart et
al. [12], who uses Tanner’s law ( 63 = 9Luvy/v), where
04 = 6; is the so-called dynamic contact angle instead of
the slipping boundary condition. In this way, the length
A plays the role of the free parameter L involved in the
above law. If the flow were strictly self-similar, then (3
and I would be constants, thus leading to the power law

V3 1/(3a+7)

where the prefactor &, = [(3a + 7)3/I%]*/ (327 is a con-
stant of the order of unity. However, in the general case,
the front position should be obtained through a numer-
ical integration of Eq. (18). In each time step, 8 and I
must be recalculated in terms of the updated values of A
and B.

For the time integration we give the constants V, p, u
and chosse 7 < a in order to start from a Laplace pres-
sure dominated regime; thus we estimate the initial time
as to = (3uzys/yV3)/1 [see Eq. (19), @ = 1]. By as-
suming that the shape factor is I = n/2 (spherical cap
shape), from the values of z¢(to) and V' we obtain hq(to)
and then A(t¢o),B(to). We also tried with different val-
ues of to and verified that the solution for ¢ > to (say,
t = 10ty) practically does not depend on the initial values
of z¢, hg, and to, a property of the self-similar solutions
that also holds for the quasi-self-similar case.

In what follows we give some numerical results showing
the transition between the Laplace pressure to the gravity
dominated regimes for three typical volumes and A\ =
107 cm. In Fig. 4 we represent the behavior of z¢, ho,
I, and H; = tan®;/(ho/xs), where 6; is the angle at
the inflection point or apparent contact angle, following
the usual experimental terminology. Both for z¢(t) and
ho(t) [Figs. 4(a) and 4(b)] two different power laws fit the
solution at earlier and later times. It is worth noting that
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the corresponding exponents are slightly different from The shape factor I is very close to 7/2 for small z¢/a
those of the extreme self-similar solutions. For instance, [early times, lower dashed lines in Fig. 4(c)], as expected
in the case of z£(t), the exponents are 0.104 and 0.131  for a spherical cap. When s /a increases (late times), I
instead of 1/10 and 1/8 [1,9]. reaches a maximum and then tends to a constant close
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FIG. 4. (a) Front positions z;(t) calculated with the model (solid lines) for 4 = 10 P, p = 0.97 g/cm®, and v =20.9 dyn/cm,
for V = 1,10, and 100 mm?®, respectively (higher curves correspond to higher volumes). The power laws (dashed lines) that
fit the solution have exponents 0.103,0.104,0.106 for the early times and 0.130,0.131,0.133 for the late times, respectively. (b)
Thickness ho(t) at the center of the drop; the exponents of the power laws for early and late times are —0.206,—0.208,—0.215 and
—0.270,—0.274,—0.277 for V = 1,10, and 100 mm?®, respectively (higher curves correspond to higher volumes). (c) Volumetric
shape factors I for V = 1,10, and 100 mm?® (higher curves correspond to higher volumes). The dashed lines correspond to
I = /2 and 37/4. (d) Ratio between the apparent contact angle and the aspect ratio H; = tan6;/(ho/zs): the power laws
that fit the solution for 5 < xz/a < 10 have exponents 0.691,0.747, and 0.847 for V = 1,10, and 100 mm?, respectively
(higher curves correspond to higher volumes). The horizontal line corresponds to H; = 1.85.
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to but not coincident with the value corresponding to
the v = 0 self-similar solution [1], namely, 3w /4 (higher
dashed lines) and slightly dependent on V. In Fig. 4(d)
we show H] as a function of zf/a for the same cases.
Clearly, for small zf/a, H! = 2, showing again that the
profile is virtually a spherical cap, while for large z¢/a,
H depends almost linearly on z¢/a, in agreement with a
wedge shaped front region with slope tanf; = ho/a [12].

IV. TIME EVOLUTION: EXPERIMENTS

There is a considerable amount of published experi-
mental results concerning viscous spreadings on wettable
surfaces; however, relatively only a few may be used to
critically test the time evolution given by the just devel-
oped quasi-self-similar solution. Most of the data concern
the extreme regimes, where the Laplace pressure or, al-
ternatively, the gravity is dominant. As a matter of fact,
it is virtually impossible to observe in the same spread-
ing an initial well defined Laplace pressure regime with
zsy < a, then a transition stage, and, finally, a gravity
dominated stage with zy > a. In practice, the exper-
imental study of the asymptotic intermediate spreading
regime is limited to a time interval between a few sec-
onds and about one day, which means a small part of the
time variation range shown in Fig. 4(a). Therefore, the
variation of zy during a given spreading may hardly ex-
ceed half of a decade and the range of volumes for which
s = a at an intermediate stage is rather small. As a con-
sequence, the changes in the flow related to the increasing
influence of gravity as spreadings advance are poorly evi-
denced by the usually reported logarithm representation
of x4y vs t. Rather than a well defined flexion point as
seen in Fig. 4(a), the experimental curves reveal only a
trend towards a slight increase of the slopes from val-
ues near 0.100 — 0.110 to 0.125 — 0.135 as the ratio zf/a
increases. In Fig. 5 we resume points from previously
reported measurements [11] and from the experiments of
this work (Fig. 6), which we shall refer to below. In Table
IIT we give also the slopes of reported logarithmic curves
x5 vs t for the whole experimental range, together with
the values obtained in our experiments; in all the cases we
give the corresponding range z¢/a. Unfortunately, these
slopes are unavoidably affected by a dispersion compara-
ble to the expected variation (0.106—0.135) because they
are obtained from small intervals of z;’s values. Further-
more, a conceptual weakness results from the fact that
they involve an averaging process. Therefore, though the
agreement with the general trends and the typical values
given by the theory is fairly good, we conclude that the
results concerning the dependence s vs t provide only a
qualitative noncritical test.

The magnitudes related to the thickness profile pro-
vide a much better test of the model. As shown in
Figs. 4(c) and 4(d), both I and H] vary strongly across
the transition; as an additional advantage, they may be
directly obtained without the need of a time averaging
process. However, their determination requires not only
the knowledge of z¢(t), but also the accurate measure-
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FIG. 5. Front positions x5 for five drops of different vol-
umes (g = 10 P, v = 20.9 dyn/cm) reported by Cazabat and
Cohen-Stuart [11]: V = 0.35 1.35, 4.03, 5.80, and 37.9 mm?.
The solid lines correspond to the quasi-self-similar solution
for A =10"° cm.

X; (cm)

0.1 et 1 a gl L1l [ A R
10 10? 10° 10*
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FIG. 6. Front positions for six drops of different volumes
(0 = 10.3 P, vy = 20.9 dyn/cm) from the present work:
V = 0.51, 1.52, 10.32, 31.52, 65.36, and 144.3 mm3. The solid
lines correspond to the quasi-self-similar solution for A = 107°
cm.
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TABLE III. Experimental results for silicone oils (PDMS) on glass.

calculated for the whole range of each experiment.

GRATTON, DIEZ, THOMAS,

MARINO, AND BETELU

The exponents p were

Reference V (mm?) z5/a interval p (x5 = tP)
[4] (0 = 10.8 and 130 P) 1.33-505 1.00-2.87 0.106-0.112
[11] (# = 10 P) 0.35 0.85-1.26 0.109

1.35 1.21-1.90 0.110
4.03 1.67-2.64 0.116
5.80 1.85-2.91 0.111
37.9 3.60-5.89 0.116

(6] (0 =1.95P) 0.034-0.305 0.41-1.00 0.080-0.123
21] (1 = 1.25 P) 1.02-38.4 1.67-7.33 0.129
Present work 0.51 0.96-1.80 0.112
(e =10.3 P) 1.52 1.14-2.42 0.119
10.32 2.03-4.85 0.125
31.52 3.12-6.73 0.125
65.32 6.67-11.74 0.131
144.3 5.37-11.74 0.134

ment of the volume V and ho(t), a magnitude that has
received relatively scarce attention before. Likewise, to
obtain H](t), the apparent contact angle 8;(t) should be
measured by means of specific techniques. Even if some
of these measurements have been performed in several
previous experiments, there is a lack of simultaneous ac-
curate determinations of zf(t), ho(t), V, and 0;(t). Be-
sides, the reported values of I falling within the range
of interest [12] are in agreement with the present model,
but they are too few to give it definite support.
Therefore, we perform experiments for a wide range
of volumes, from “light” drops (V = 1 mm3?) to rela-
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|
|
1 1
|

| Laser B

FIG. 7. Optical arrangement based on a Mach-Zehnder
interferometer with outputs 1 and 2. The measurement of
h(x,t) is from the interferogram formed on screen 1, due to
the superposition of the magnified image of the drop and a
uniform light field. The drop image is formed by the beams
coming from the bottom and the right-hand side of the in-
terferometer. The measurement of 6;(t) is from the far field
diffraction pattern of the drop on screen 2.

tively “heavy” drops (V = 100 mm?) of polydimethilsy-
loxane (PDMS). We use a Mach-Zehnder interferometer,
with the substrate (glass) supporting the spreading drop
placed in one of its arms (see Fig. 7). We determine
xf(t), ho(t), and h(z,t) from one of the interferometer
arms [29]. The integration of the thickness profile pro-
vides an accurate value of the drop volume. The size
of the Fraunhaufer diffraction pattern of the drop [30],
formed by the second interferometer output, gives the ap-
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FIG. 8. Thickness at the center of the drop ho for the cases
of Fig. 6. For comparison we include two straight dashed lines
with slope —0.2, which is the exponent corresponding to an
eventual, strict self-similar solution in the Laplace regime.
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Lol 1 i1 a gl
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FIG. 9. Apparent contact angles for the cases of Fig. 6 in
which 6; was measured: V = 0.51, 1.52, 31.52, and 65.36

mm?. The solid lines correspond to the quasi-self-similar so-
lution for A = 107% cm.

parent contact angle. Both patterns are simultaneously
recorded by video cameras.

In Figs. 8 and 9 we compare the experimental val-
ues (symbols) of ho(t) and 6;(t) with the theory (solid
lines). In order to visualize the departure from strict
self-similarity we have added in Fig. 8 two straight lines

26 : ————y
| E
- T%
24 p7
22 -
I ool -
A
18 1 P i
- LX) ° .9 E
(3 Fava¥
163{-,05813 .
a
1 1 L1 |
1 10
X/ a

FIG. 10. Volumetric shape factors I for the cases of Fig. 6.
The lines correspond to the quasi-self-similar solution for
some of the volumes: V = 1 mm?® (dotted curve), 10
mm?® (dash-dotted curve), and 100 mm® (dash—-double-dotted
curve). The stars [12] correspond to V = 200 mm?.
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FIG. 11. Ratio between the apparent contact angle and
the aspect ratio H; = tan®;/(ho/zs) for the cases of Fig. 9
(symbols). The curves correspond to the quasi-self-similar
solution for A = 107 cm: V = 0.51 mm? (solid curve), 1.52
mm?® (dashed curve), 31.52 mm® (dash-dotted curve), and
65.36 mm?> (dash-double-dotted curve).

of slope —0.2, which is the exponent corresponding to an
eventual strict self-similar solution in the Laplace regime.
It can be seen that, as expected, the departures are larger
for higher volumes. Similar but smaller departures could
be also observed for 6;(t) in Fig. 9. The agreement is
satisfactory, except for the case V = 0.51 mm? in Fig. 8,
where there appears a departure from the model solution
for very small thicknesses (< 50 pm). From the data re-
ported in Figs. 6, 8, and 9 it is possible to determine I
and H!, which are shown in Figs. 10 and 11 together with
the corresponding theoretical curves. In Fig. 10 we have
added data reported elsewhere [12] (stars). Despite the
dispersion due to the error accumulation from the val-
ues of x, hg, 6;, and V, the general agreement with the
predictions of the model is remarkably good.

The curves z(t), ho(t), and, as a consequence, I(zs/a)
are not very sensitive to the choice of A. In practice, a
change by a factor 2 or 3 does not produce apprecia-
ble differences, so that only the order of magnitude of
A (= 107% cm) is suggested. However, 6;(t) and H] are
much more sensitive to A, perhaps because the inflection
point is very close the front itself. Therefore, we calcu-
late the best-fitting value of A from the #; data. In our
experiments (PDMS with viscosity 4 = 10 P on a glass
substrate), we get A = (1 £0.1) x 107¢ cm.

V. CONCLUDING REMARKS

A quasi-self-similar solution may be properly used to
describe the spreading of liquid drops driven by both
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gravity and Laplace pressure under the condition of com-
plete wetting. The solution results from the addition
of successive self-similar solutions, each one correspond-
ing to the instantaneous values of the fractional slipping
length A and the Bond number B. This approach does
not need spatial matching because each one of the time
added solutions is completely determined from the center
to the periphery. The main assumption is that the spa-
tial averaged horizontal velocity is always linear on the
coordinate in the flow direction. Even though we do not
attempt to demonstrate the mathematical conditions for
the validity of the approach, its applicability is clearly
related with the smallness of the diffusion time of the
velocity field with respect to the time evolution of the
system.

We wish to point out that the quasi-self-similar ap-
proach can also be used in connection with hypotheses
other than the relaxation of the no-slip condition. In fact,
in a previous work [15] we used this method together with
a quite different way of dealing with the front condition
for spreadings where the Laplace pressure was the only
driving force.

Quasi-self-similarity appears as an analog of quasiequi-
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librium, in the sense that the evolution of a system is
described as a succession of “self-similar states,” just as
the evolution is a succession of “equilibrium states” in
the latter case. The most significant difference is that
no additional hypothesis for the spreading rate is needed
since it is automatically provided by the instantaneous
self-similar profile. In general, we believe that the quasi-
self-similar method proposed here can be useful for cases
where strict self-similarity does not hold, but in which
the time of adjustment of the system to changes of the
governing parameters is much smaller than the charac-
teristic times of their variation. Therefore, the essential
features of the intermediate asymptotic behavior are re-
tained.
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